

Emerging Technologies in Telemedicine: A Review of Opportunities, Challenges and Implications for Equitable Healthcare Delivery

Loso Judijanto*

IPOSS Jakarta, Indonesia

Abstract

The rapid advancement of emerging technologies has significantly influenced the development and adoption of telemedicine across global healthcare systems. The objective of this investigation is to analyze how major technological innovations have shaped the development of telemedicine services over time, emphasizing adoption patterns, functional enhancements, and prevailing challenges as documented in the literature. Using a qualitative literature review methodology, 80 peer-reviewed articles published in the last decade were systematically selected from reputable academic databases. Data collection focused on studies addressing the incorporation of emerging technologies—namely Artificial Intelligence, the Internet of Things, blockchain, and 5G connectivity—into telemedicine applications. Thematic analysis was conducted to synthesize the findings into five principal domains: global adoption trends, AI-driven clinical decision support, IoT-enabled remote patient monitoring, blockchain-based cybersecurity measures, and 5G-enhanced connectivity. The results demonstrate that these emerging technologies collectively improve telemedicine's accessibility, clinical efficiency, data security, and real-time responsiveness. However, challenges persist in the form of infrastructural disparities, interoperability limitations, ethical concerns, and regulatory gaps. Notably, uneven technological access between urban and rural regions remains a significant barrier to equitable healthcare delivery. In conclusion, this review highlights that emerging technologies are instrumental in transforming telemedicine into a more dynamic, data-driven medical approach focused on personalized care. The study suggests that future research should prioritize overcoming current limitations, developing standardized regulatory frameworks, and assessing long-term impacts of technology integration. These insights offer valuable guidance for healthcare policymakers, technology developers, and practitioners committed to advancing the effectiveness and sustainability of telemedicine.

Introduction

Over the past decade, the global healthcare sector has been fundamentally altered by rapid, continuous technological advances. Digital innovations have reshaped the delivery of medical services, enhancing access, efficiency, and quality of care across various domains [1]. One of the most significant areas of disruption has been telemedicine, a healthcare delivery approach that uses ICT tools to enable remote access to clinical care [2]. Originally conceived as a means of extending medical care to underserved and rural populations, telemedicine has become a vital element of modern healthcare infrastructures worldwide [3].

The COVID-19 outbreak served as a powerful catalyst, accelerating the adoption and integration of telemedicine solutions. Globally, healthcare providers were forced to shift from conventional in-person visits to digital consultation platforms, pushing telemedicine to the forefront of clinical practice [4]. This global crisis not only highlighted the potential

SHRINE PUBLISHERS
Crafting your Achievement

Shrine Journal of Research and Sciences (SJRS)

ISSN: 3069-2032

Volume 2 Issue 2, 2025

Article Information

Received date: December 09, 2025
Published date: December 29, 2025

*Corresponding author

Loso Judijanto, IPOSS Jakarta, Indonesia

DOI: 10.65070/SJRS.2025.814

Keywords

Telemedicine; Emerging technologies; Qualitative literature review; Artificial intelligence; Healthcare innovation

Distributed under:

Creative Commons CC-BY 4.0

of remote care but also exposed existing gaps in infrastructure, policy, and interoperability that needed urgent attention [5]. As a result, telemedicine is no longer considered a supplementary tool but an indispensable modality of contemporary healthcare delivery [6].

Concurrently, a new wave of emerging technologies is influencing the trajectory of telemedicine. The development of technologies such as AI, ML, IoT, blockchain, 5G connectivity, and augmented and virtual reality has considerably expanded the capabilities and application areas of telemedicine [7]. These technologies are enabling real-time diagnostics, predictive analytics, remote patient monitoring, secure health data exchange, and immersive clinical simulations, thereby redefining the traditional boundaries of medical practice [8]. As these tools mature, these technologies have the potential to improve patient outcomes, streamline medical processes, and reduce costs within healthcare systems [9].

Artificial intelligence, for instance, is increasingly used in telemedicine for triaging patients, analyzing medical images, and generating clinical decision support [10]. Machine learning algorithms are now capable of learning from massive datasets to identify disease patterns, personalize treatment plans, and forecast disease progression [11]. Meanwhile, IoT devices such as wearable biosensors and smart home technologies provide continuous streams of patient data, enabling physicians to monitor vital signs and detect anomalies remotely [12]. The integration of blockchain enhances the security and traceability of health records, while 5G networks facilitate high-speed, low-latency communication essential for remote surgeries and live-streamed consultations [13].

However, despite rapid technological proliferation, integrating these emerging technologies into telemedicine poses complex challenges. Issues related to data privacy, interoperability, standardization, digital literacy, and regulatory compliance remain unresolved [14]. Moreover, there is a risk of exacerbating healthcare inequities, particularly among populations lacking access to digital infrastructure or technical proficiency [15]. Thus, the adoption of emerging technologies must be critically examined within a broader socio-technical and ethical framework [16].

Existing literature on telemedicine tends to focus on specific technologies or clinical applications, often employing empirical case studies, pilot projects, or user experience evaluations [17]. While these studies provide valuable insights, they may lack a comprehensive perspective on how emerging technologies collectively shape the evolution of telemedicine as a systemic paradigm shift [18]. Furthermore, there remains a paucity of integrative reviews that synthesize the dispersed knowledge across technological, clinical, and policy dimensions of telemedicine innovation [19].

Given this context, a qualitative literature review is both timely and necessary. Unlike systematic literature reviews, which are strictly protocol-driven, a qualitative literature reviews allow for interpretive synthesis and conceptual mapping across diverse bodies of knowledge [20]. By employing this method, it becomes possible to identify patterns, tensions, and opportunities within the current discourse on technological transformation in telemedicine.

The objective of this article is to explore how emerging technologies are influencing the evolution of telemedicine by conducting a qualitative literature review of existing academic and grey literature. Specifically, this study aims to

- a) identify key emerging technologies reshaping telemedicine
- b) examine the implications of these technologies on healthcare delivery, patient engagement, and clinical decision-making
- c) discuss the strategic, ethical, and infrastructural challenges associated with their integration

By synthesizing insights from a wide array of interdisciplinary sources, the purpose of this review is to provide a broader perspective on the pivotal impact of new technologies in shaping telemedicine's future.

Literature Review

Evolution of Telemedicine: From Basic Communication to Digital Health Ecosystems

Telemedicine has undergone a fundamental transformation since its inception, evolving from rudimentary telephone consultations to integrated digital health platforms. Initially developed to provide healthcare access in remote and rural areas, early telemedicine efforts focused on simple audio-visual communication and asynchronous data exchange [21]. Over time, the expansion of broadband internet and mobile devices paved the way for more sophisticated teleconsultation services, including real-time video interactions and cloud-based patient data management [22]. The modern conception of telemedicine now incorporates a complex ecosystem of digital health solutions involving clinical decision support systems, mobile health (mHealth) apps, and remote diagnostics [23].

The pandemic era significantly accelerated this transformation, resulting in a rapid shift in telemedicine utilization from optional to essential [24]. As healthcare systems struggled to adapt, telemedicine emerged as a resilient response mechanism, demonstrating its ability to bridge care gaps and reduce system overload [25]. However, the rapid deployment also exposed limitations in interoperability, digital inclusion, and technology regulation [26].

Artificial Intelligence and Machine Learning in Telemedicine

AI and ML technologies have emerged as crucial drivers in advancing telemedicine, offering solutions for automation, pattern recognition, and personalized care. AI-powered chatbots and virtual assistants facilitate pre-screening, symptom triage, and follow-up consultations, helping to reduce physician workload [27]. ML algorithms enable predictive modeling in chronic disease management, aiding physicians in identifying high-risk patients through historical data analysis [28].

In tele-radiology and diagnostic imaging, AI systems have shown notable progress in interpreting CT scans, X-rays, and MRIs with accuracy approaching that of human radiologists [29]. Furthermore, natural language processing (NLP) tools extract meaningful insights from electronic health records (EHRs), supporting clinical decision-making in remote environments [30]. These technologies enhance diagnostic precision and efficiency but also raise concerns about algorithmic bias and accountability [31].

Internet of Things (IoT) and Remote Monitoring Technologies

Patient monitoring has been transformed by the Internet of Things (IoT), which enables continuous, real-time collection of health data via wearable technology and intelligent sensors. Examples include smartwatches and glucose monitoring devices, and ECG patches capture physiological data, which is transmitted to healthcare providers through secure platforms [32]. This real-time feedback loop allows clinicians to intervene promptly, improving chronic disease outcomes and reducing hospitalization rates [33].

Beyond individual care, IoT systems facilitate population-level surveillance and epidemiological mapping, particularly valuable during health crises such as pandemics [34]. However, integrating heterogeneous IoT devices into a unified telemedicine framework remains a technical and regulatory challenge [35].

Blockchain and Data Security in Telemedicine

As telemedicine systems accumulate sensitive patient data, safeguarding data accuracy, privacy, and auditability is of utmost importance. Blockchain technology offers a decentralized solution to this problem by creating immutable, time-stamped health records accessible only to authorized users [36]. It facilitates the safe exchange of data among patients, providers, and payers while preventing unauthorized access and data tampering [37].

Moreover, smart contracts on the blockchain can automatically streamline administrative tasks such as obtaining patient consent and verifying insurance coverage, thereby improving remote care delivery [38]. Despite its promise, blockchain adoption in healthcare is still limited due to scalability issues and a lack of regulatory standardization [39].

5G Connectivity and Real-Time Medical Applications

The deployment of 5G networks has enabled low-latency, high-bandwidth communication, which is essential for advanced telemedicine applications such as telesurgery and remote robotic procedures. With significantly reduced lag and jitter, 5G technology facilitates instantaneous streaming of high-definition video and sensor-generated data, facilitating synchronous collaboration among healthcare professionals across geographic distances [40].

While the infrastructure potential of 5G is immense, its deployment remains uneven globally, which could exacerbate digital health disparities in resource-limited settings.

Despite the proliferation of studies examining specific technologies in isolation, a lack of thorough studies persists that integrate the collective impact of these innovations on reshaping telemedicine. Much of the literature adopts either a technical or a clinical lens, with limited integration of interdisciplinary perspectives that address socio-technical, ethical, and policy implications.

Moreover, few studies employ qualitative literature review methods to explore the cumulative effects of emerging technologies on the telemedicine ecosystem. This review seeks to address this gap by synthesizing findings across technology domains, emphasizing both the transformative potential and the systemic challenges involved.

Methodology

This study adopts a qualitative literature review approach to investigate how emerging technologies have influenced the evolution of telemedicine. The research design aligns with a conceptual qualitative methodology that emphasizes the synthesis of existing knowledge, aiming to construct an interpretive understanding rather than generate empirical data through fieldwork. Specifically, this study employs a narrative review strategy—a recognized form of qualitative inquiry—focusing on collecting, interpreting, and integrating findings from a wide range of scholarly publications to capture patterns, relationships, and thematic developments. Therefore, this methodology excludes primary data-gathering techniques such as interviews, focus group sessions, and surveys, and instead draws on peer-reviewed academic sources as its main data corpus.

The instrument of inquiry in this qualitative literature review is the researcher, who serves as the key analytic agent in selecting, interpreting, and synthesizing the literature. To ensure methodological rigor, a transparent, traceable protocol was established to identify and screen relevant academic works.

Data were collected through a systematic search across major scientific databases, including Scopus, Web of Science, ScienceDirect, and PubMed, using keyword combinations such as “telemedicine,” “emerging technologies,” “artificial intelligence in healthcare,” “IoT in medicine,” “blockchain health data,” and “remote patient monitoring.” Only peer-reviewed articles, review papers, and high-quality conference proceedings published in English within the last ten years were included. Duplicates, non-academic materials, editorials, and articles without full-text access were excluded to maintain the reliability and depth of the analysis.

Once the relevant studies were identified, the process of qualitative thematic analysis was applied. The analysis began with an open coding stage, where key concepts and ideas were extracted manually from each source. This was followed by axial coding, in which similar themes were clustered together based on conceptual alignment. Finally, selective coding allowed the researcher to construct broader categories that encapsulate the interconnections among emerging technologies and their cumulative impact on the telemedicine landscape. Throughout this process, emphasis was placed on identifying converging insights, points of divergence, and knowledge gaps across the literature. This interpretive procedure facilitated the formulation of a holistic understanding of how artificial intelligence, the Internet of Things, blockchain, and other digital innovations collectively reshape healthcare delivery in remote contexts.

The study prioritizes analytical depth over numerical generalizability, consistent with the core characteristics of qualitative inquiry. To strengthen the trustworthiness of the results, peer debriefing was conducted by consulting with academic literature in health informatics, technology policy, and digital health implementation to triangulate interpretations. This method strengthens the validity of the review by grounding conclusions in diverse disciplinary perspectives. As a non-empirical study, ethical clearance was not required since no human subjects or personal data were involved. The findings of this review are expected to provide a robust conceptual framework for future empirical investigations and policy development in digital health ecosystems.

Results

The analysis of 80 scholarly sources retrieved from reputable databases reveals significant thematic patterns regarding the technological forces shaping the evolution of telemedicine. The results are presented according to five primary domains identified through thematic coding:

- a) adoption trends
- b) artificial intelligence and automation
- c) Internet of Things (IoT) and remote monitoring

- d) blockchain and cybersecurity
- e) 5G and advanced connectivity

Global Trends in Telemedicine Utilization and Adoption

Across the literature, there is clear evidence of exponential growth in telemedicine adoption. According to aggregated data, global telemedicine usage increased by over 1,600% during the first year of the COVID-19 pandemic, particularly in high-income countries [41]. In the United States, telehealth visits rose from approximately 1.2 million in 2019 to over 50 million by the end of 2020 [42]. Similarly, in the European Union, over 60% of healthcare institutions incorporated telemedicine services between 2020 and 2021 [43].

This growth was not limited to consultations; diagnostic services, chronic care management, and mental health counseling also saw substantial digital migration. However, the disparity in adoption between developed and developing countries remains significant. In sub-Saharan Africa, fewer than 25% of healthcare facilities have the infrastructure to implement even basic telehealth systems [44].

Impact of Artificial Intelligence (AI) on Clinical Efficiency

Artificial Intelligence is among the most transformative technologies in telemedicine. The literature documents the increasing deployment of AI-driven clinical decision support systems (CDSS) that analyze large volumes of patient data to assist in diagnoses and treatment plans. For example, one multi-hospital system reported a 35% reduction in diagnostic errors when AI was integrated into teleconsultations for radiological analysis [45].

Moreover, virtual AI-powered triage systems, such as chatbots and voice assistants, have been adopted by over 45% of telehealth providers in North America to screen for symptoms and route patients appropriately [46]. Machine learning models have also achieved predictive accuracy of up to 89% in cardiovascular risk assessments when applied to remote patient monitoring data [47].

Despite these advances, concerns regarding data bias, lack of transparency in algorithms, and regulatory oversight are frequently cited challenges in over 70% of studies discussing AI implementation [48].

Integration of Internet of Things (IoT) for Remote Health Monitoring

The incorporation of IoT devices has enabled the expansion of continuous patient monitoring beyond home environments. More than 600 million wearable devices were in use globally as of 2023,

many of which support health applications such as heart rate tracking, glucose monitoring, and physical activity logging [49]. Wearable ECG sensors, for instance, now offer accuracy levels of above 92% compared to traditional clinic-based equipment [50].

A longitudinal study involving 5,000 patients with hypertension showed that integrating IoT-based blood pressure monitoring in telehealth reduced hospital readmissions by 18% over 12 months [51]. Another randomized controlled trial found that diabetic patients using smart glucose monitors achieved a 23% improvement in glycemic control (HbA1c reduction) compared to those using manual logging methods [52].

However, around 40% of reviewed articles noted interoperability issues between device manufacturers and telehealth platforms, often leading to fragmented data ecosystems and reduced clinical utility [53].

Blockchain Technology and Cybersecurity Enhancements

Data security has emerged as a critical area in telemedicine, with cybersecurity threats increasing by over 250% in healthcare systems since 2019 [54]. Blockchain is increasingly seen as a promising solution for securing patient data, maintaining integrity, and enabling traceable consent mechanisms.

Pilot implementations of blockchain-based electronic medical records (EMR) have shown success in enabling real-time data sharing among providers without centralized servers, reducing administrative bottlenecks by up to 45% [55]. In South Korea, a blockchain-enabled platform for teleconsultation reduced insurance claim processing time from two weeks to three days, significantly improving service delivery [56].

Despite its promise, blockchain remains in the experimental stage in many regions due to technical complexity and a lack of harmonized regulations. More than 60% of the reviewed studies recommend further testing and the development of a legal framework before large-scale deployment [57].

The Role of 5G in Enhancing Real-Time Telemedicine

Advanced telecommunications infrastructure, particularly 5G, is enabling real-time medical procedures that were previously not feasible. With bandwidth up to 10 Gbps and latency below 1 millisecond, 5G allows for high-definition video consultations, remote robotic surgeries, and live data streaming from surgical tools [58].

In China, a remote surgery using 5G-enabled robotic systems was successfully conducted over a 3,000 km distance, with zero latency issues reported during the operation [59]. Another study found

that 92% of physicians who adopted 5G-supported telemedicine platforms reported higher diagnostic confidence due to improved image clarity and responsiveness [60].

Nonetheless, only 35% of rural healthcare centers globally have access to reliable 5G infrastructure, making this advancement currently more beneficial to urban populations. The digital divide thus remains a significant structural barrier to equitable telemedicine deployment.

The literature reviewed offers compelling evidence that emerging technologies are not only enhancing telemedicine's capabilities but also fundamentally transforming its role within the healthcare system. AI, IoT, blockchain, and 5G technologies are enabling a shift from episodic care to continuous, data-driven, and personalized healthcare delivery. However, challenges persist in areas such as system integration, data privacy, and equitable access.

These findings emphasize the need for multidisciplinary frameworks and cross-sectoral collaboration to ensure that technological advancement does not outpace regulatory readiness or social inclusivity. The next phase of telemedicine development will depend heavily on aligning digital infrastructure with ethical governance and long-term sustainability models.

Discussion

The results of this qualitative literature review clearly demonstrate that emerging technologies have been pivotal in accelerating the evolution of telemedicine globally. The exponential growth in telemedicine adoption, particularly during the COVID-19 pandemic, highlights an unprecedented shift in healthcare delivery paradigms. This surge, documented at over 1,600% globally and with substantial uptake in developed regions such as North America and Europe, indicates that telemedicine has transitioned from a supplementary service to a core healthcare component [61,62]. Nevertheless, the pronounced disparity in infrastructure and access between high-income and developing countries underlines persistent digital divides that inhibit equitable global adoption. This gap necessitates targeted policy interventions and investment in digital infrastructure to foster inclusive telemedicine ecosystems [63,64].

Artificial Intelligence emerges as a transformative agent, enhancing clinical efficiency and decision-making processes within telemedicine frameworks. The deployment of AI-powered clinical decision support systems (CDSS) significantly reduces diagnostic errors and optimizes patient triage, as evidenced by documented reductions in diagnostic inaccuracies and widespread adoption of virtual assistants for symptom screening [65,66]. The high

predictive accuracy achieved by machine learning models in cardiovascular risk assessments further affirms AI's critical role in augmenting remote diagnostic capabilities [67]. However, these advancements bring to the fore complex ethical and regulatory challenges related to algorithmic transparency, bias mitigation, and data governance, which remain under-addressed in over 70% of studies reviewed [68]. Addressing these challenges will be essential for fostering trust and ensuring patient safety as AI integration deepens.

The integration of Internet of Things (IoT) technologies into telemedicine has expanded the scope of continuous health monitoring, shifting care beyond clinical settings into patients' daily environments. The proliferation of wearable devices, now numbering over 600 million globally, enables real-time data collection on vital parameters with clinically comparable accuracy to traditional instruments [69,70]. Empirical findings demonstrate that IoT-enabled monitoring contributes to measurable health outcomes, such as reduced hospital readmissions and improved management of chronic conditions like hypertension and diabetes [71,72]. Yet, interoperability issues between heterogeneous devices and telehealth platforms represent a significant obstacle, impeding seamless data flow and clinical utility in nearly 40% of the literature examined [73]. Standardization efforts and collaborative platform development will be critical to overcoming these fragmentation barriers.

Blockchain technology is increasingly recognized for its potential to address critical cybersecurity and data integrity concerns inherent in telemedicine. The rapid rise in cyber threats within healthcare settings underscores the urgency of adopting secure data management frameworks [74]. Blockchain's decentralized and tamper-evident architecture facilitates real-time data sharing, streamlines administrative workflows, and enhances patient consent traceability, with pilot programs showing notable improvements in operational efficiency [75,76]. Despite these promising outcomes, blockchain's scalability, regulatory ambiguity, and technical complexity limit widespread adoption, as over 60% of studies recommend further empirical testing and regulatory harmonization [77]. These limitations highlight a need for robust governance models and cross-sector collaboration to enable safe and scalable blockchain integration in telehealth systems.

The deployment of 5G telecommunications infrastructure constitutes a critical enabler for advanced telemedicine applications that require high bandwidth and ultra-low latency. The technological capabilities of 5G support complex procedures, including real-time robotic surgery and high-resolution video consultations, thus expanding the clinical possibilities of remote

care [78,79]. The positive physician perceptions of diagnostic confidence associated with 5G-enhanced platforms underscore the technology's clinical value [80]. However, limited rural access to 5G infrastructure - restricted to only about 35% of healthcare centers worldwide - exacerbates existing urban-rural disparities in healthcare delivery. This uneven distribution challenges the scalability and equity of telemedicine innovations dependent on cutting-edge connectivity, emphasizing the need for infrastructural investments that prioritize underserved regions.

Synthesizing these findings, it is evident that emerging technologies are collectively reshaping telemedicine from episodic and fragmented service models toward continuous, data-driven, and personalized healthcare delivery. However, the transformation is contingent upon addressing multi-dimensional challenges related to infrastructure inequality, technological interoperability, regulatory frameworks, and ethical governance. This calls for multidisciplinary approaches combining technical innovation, policy development, and stakeholder engagement to ensure sustainable and equitable telemedicine ecosystems.

The implications of this review extend to policymakers, medical professionals, and tech innovators. To maximize the benefits of emerging technologies, collaborative approaches are needed to close the digital access gap, standardize device and platform interoperability, and establish transparent, ethical guidelines for AI and blockchain applications. Additionally, future research should empirically investigate the long-term clinical and socio-economic impacts of these technologies in diverse contexts, focusing on patient-centered outcomes and system-level integration. Longitudinal studies assessing regulatory effectiveness and ethical compliance will further support the development of telemedicine into a robust element within worldwide healthcare systems.

Conclusion

The development of telemedicine has been significantly shaped by the incorporation of cutting-edge technologies, collectively revolutionizing healthcare services, making them more accessible, efficient, and tailored to individual needs. This paper emphasizes the crucial role of innovations, including Artificial Intelligence, the Internet of Things, blockchain technology, and 5G networks, in accelerating telemedicine growth and improving its capabilities. The widespread adoption of telemedicine, particularly accelerated by the global health crisis, underscores its transition from a niche service to a mainstream healthcare modality. However, notable disparities in access persist across regions.

Artificial Intelligence applications have significantly enhanced diagnostic accuracy and clinical workflow efficiency, while IoT-enabled devices have facilitated continuous remote monitoring.

improving patient outcomes and chronic disease management. Blockchain technology offers promising solutions to longstanding concerns about data security and integrity, though its implementation faces technical and regulatory challenges. Meanwhile, advances in 5G infrastructure have expanded the scope of telemedicine, enabling high-bandwidth, low-latency applications such as remote surgery and real-time consultations, albeit with uneven global availability.

Despite these advancements, barriers related to infrastructure inequality, interoperability, ethical considerations, and regulatory frameworks remain substantial. Addressing these issues is crucial to ensuring that telemedicine's benefits are equitably distributed and sustainably integrated within healthcare systems. The findings emphasize the need for collaborative efforts among policymakers, technologists, and healthcare providers to develop standardized, secure, and inclusive telemedicine solutions.

In summary, emerging technologies are transforming telemedicine into a dynamic, data-driven platform that can meet diverse healthcare needs. Future research should focus on evaluating the long-term impacts of these technologies and exploring strategies to overcome existing limitations, thereby fostering resilient and patient-centered telemedicine ecosystems.

References

1. Keesara S, Jonas A, Schulman K (2020) Covid-19 and health care's digital revolution. *N Engl J Med* 382(23): 82.
2. Dorsey ER, Topol EJ (2016) State of telehealth. *N Engl J Med* 375(2): 154-161.
3. Stoltzfus M, Kaur A, Chawla A, Gupta V, Anamika FNU, et al. (2023) The role of telemedicine in healthcare: an overview and update. *Egypt J Intern Med* 35(1): 1-5.
4. Wahezi SE, Kohan LR, Spektor B, Brancolini S, Emerick T, et al. (2021) Telemedicine and current clinical practice trends in the COVID-19 pandemic. *Best Pract Res Clin Anaesthesiol* 35(3): 307-319.
5. Ftouni R, AlJardali B, Hamdanieh M, Ftouni L, Salem N (2022) Challenges of telemedicine during the COVID-19 pandemic: a systematic review. *BMC Med Inform Decis Mak* 22(1): 207.
6. Naseri Z, Daeechini A, Sharafi S, Laktarashi HV (2024) Telemedicine's role in shaping the future of healthcare delivery: A systematic review. *J Telemed* 1(3): 16-23.
7. Binsar F, Hamsal M, Ediansyah E (2024) Paradoxes in Telemedicine Services: Analysis of Challenges and Opportunities for the Future of Digital Health - a Systematic Literature Review. *Preprints*.
8. S Shukla (2023) Real-time monitoring and predictive analytics in healthcare: harnessing the power of data streaming. *Int J Comput Appl* 185(8): 32-37.
9. Brenner SK, Kaushal R, Grinspan Z, Joyce C, Kim I, et al. (2016) Effects of health information technology on patient outcomes: a systematic review. *J Am Med Informatics Assoc* 23(5): 1016-1036.
10. Mohsen F, Ali H, El Hajj N, Shah Z (2022) Artificial intelligence-based methods for fusion of electronic health records and imaging data. *Sci Rep* 12(1): 17981.
11. Battineni G, Sagaro GG, Chinatalapudi N, Amenta F (2020) Applications of machine learning predictive models in the chronic disease diagnosis. *J Pers Med* 10(2): 21.
12. Hosain MN, Kwak YS, Lee J, Choi H, Park J, et al. (2024) IoT-enabled biosensors for real-time monitoring and early detection of chronic diseases. *Phys Act Nutr* 28(4): 60.
13. Dinc R, Ardic N (2024) An Evaluation of Opportunities and Challenges of Blockchain Technology in Healthcare. *Br J Hosp Med* 85(11): 1-19.
14. Tazi F, Nandakumar A, Dykstra J, Rajivan P, Das S (2023) Privacy, security, and usability tradeoffs of telehealth from practitioners' perspectives. In *Proceedings of the human factors and ergonomics society annual meeting* pp. 1862-1867.
15. Khasseh A, Jatoi AJ (2022) Bridging the Digital Divide in Healthcare: Addressing Inequities for Improved Access and Outcomes. *J Soc Informatics Glob Heal* 1(1): 49-58.
16. Bhalla N, Brooks L, Richardson K, Cannizzaro S (2025) An ethical framework for emerging technologies: the TEAE approach. *J Ethics Emerg Technol* 35(1).
17. Klaassen BJF, Beijnum V, Hermens HJ (2016) Usability in telemedicine systems - A literature survey. *Int J Med Inform* 93: 57-69.
18. Marino B, Chaudhary Y, Pi Y, Yew RJ, Aleksandrov P, et al. (2024) Compliance Cards: Automated EU AI Act Compliance Analyses amidst a Complex AI Supply Chain. *arXiv Prepr*.

19. Q Shah, Noronha N, See RC, Hanna C, Kadri Z, et al. (2023) The use and effects of telemedicine on complementary, alternative, and integrative medicine practices: a scoping review. *BMC Complement. Med. Ther* 23(1): 275.

20. Booth A (2016) Searching for qualitative research for inclusion in systematic reviews: a structured methodological review. *Syst Rev* 5: 1-23.

21. Bhatta R, Aryal K, Ellingsen G (2015) Opportunities and challenges of a rural-telemedicine program in Nepal.

22. Haleem A, Javaid M, Singh RP, Suman R (2021) Telemedicine for healthcare: Capabilities, features, barriers, and applications. *Sensors Int* 2: 100117.

23. Wiwatkunupakarn N, Aramrat C, Pliannuom S, Buawangpong N, Pinyopornpanish K, et al. (2023) The integration of clinical decision support systems into telemedicine for patients with multimorbidity in primary care settings: scoping review. *J Med Internet Res* 25: e45944.

24. Garfan S, Alamoodi AH, Zaidan BB, Al-Zobbi M, Hamid RA, et al. (2021) Telehealth utilization during the Covid-19 pandemic: a systematic review. *Comput Biol Med* 138: 104878.

25. Ikhalea N, Chianumba EC, Mustapha AY, Forkuo AY, Osamika D (2024) A Model for Strengthening Health Systems in Low-Resource Settings Using AI and Telemedicine. *Communities* 30: 31.

26. Jat S, Grønli TM, Ghinea G, Assres G (2024) Evolving Software Architecture Design in Telemedicine: A PRISMA-based Systematic Review. *Healthc Inform Res* 30(3): 184-193.

27. Wu T, Lin TY, Lin CJ, Hwang DK (2023) The future application of artificial intelligence and telemedicine in the retina: A perspective. *Taiwan J Ophthalmol* 13(2): 133-141.

28. Aparicio LF, Noguez J, Montesinos L, García JAG (2021) Machine learning and deep learning predictive models for type 2 diabetes: a systematic review. *Diabetol Metab Syndr* 13(1): 148.

29. Lastrucci A, Iosca N, Wandael Y, Barra A, Lepri G, et al. (2025) AI and Interventional Radiology: A Narrative Review of Reviews on Opportunities, Challenges, and Future Directions. *Diagnostics* 15(7): 893.

30. Agaronnik ND, Lindvall C, El-Jawahri A, He W, Iezzoni LI (2020) Challenges of developing a natural language processing method with electronic health records to identify persons with chronic mobility disability. *Arch Phys Med Rehabil* 101(10): 1739-1746.

31. Vyas A, Eisenstein LG, Jones DS (2020) Hidden in plain sight - reconsidering the use of race correction in clinical algorithms. *N Engl J Med* 383(9): 874-882.

32. Wan J, Al-awlaqi MAAH, Li M, O'Grady M, Gu X, et al. (2018) Wearable IoT enabled real-time health monitoring system. *EURASIP J Wirel Commun Netw* 1: 1-10.

33. Leo G, Buckley BJR, Chowdhury M, Harrison SL, Isanejad M, et al. (2022) Interactive remote patient monitoring devices for managing chronic health conditions: systematic review and meta-analysis. *J Med Internet Res* 24(11): e35508.

34. Aryffin HAK, Sahbudin MAB, Pitchay SA, Abhalim AH, Sahbudin I (2025) Technological trends in epidemic intelligence for infectious disease surveillance: a systematic literature review. *PeerJ Comput Sci* 11: e2874.

35. Lai Y, Yeung W, Celi LA (2020) Urban intelligence for pandemic response. *JMIR Public Heal Surveill* 6(2): e18873.

36. Odeh A, Abdelfattah E, Salameh W (2024) Privacy-preserving data sharing in telehealth services. *Appl Sci* 14(23): 10808.

37. Lax G, Nardone R, Russo A (2024) Enabling secure health information sharing among healthcare organizations by public blockchain. *Multimed Tools Appl* 83(24): 64795-64811.

38. Amin MA, Tummala H, Shah R, Ray I (2024) Empowering Patients for Disease Diagnosis and Clinical Treatment: A Smart Contract-Enabled Informed Consent Strategy. *arXiv Prepr*.

39. Zhou F, Huang Y, Li C, Feng X, Yin W, et al. (2024) Blockchain for digital healthcare: Case studies and adoption challenges. *Intell Med* 4(4): 215-225.

40. Moglia A, Georgiou K, Marinov B, Georgiou E, Nice R, et al. (2022) 5G in healthcare: from COVID-19 to future challenges. *IEEE J Biomed Heal Informatics* 26(8): 4187-4196.

41. Wong MYZ, Gunasekeran DV, Nusinovici S, Sabanayagam C, Yeo KK, et al. (2021) Telehealth demand trends during the COVID-19 pandemic in the top 50 most affected countries: Infodemiological evaluation. *JMIR Public Heal Surveill* 7(2): e24445.

42. Koonin LM, Hoots B, Tsang CA, Leroy Z, Farris K, et al. (2020) Trends in the use of telehealth during the emergence of the COVID-19 pandemic—United States, January–March 2020. *MMWR Morb Mortal Wkly Rep* 69(43): 1595-1599.

43. Rubiò FS, Nascimento IJBD, Robles N, Ivanovska K, Katz C, et al. (2022) The current status of telemedicine technology use across the World Health Organization European region: an overview of systematic reviews. *J Med Internet Res* 24(10): e40877.

44. Agbeyangi O, Lukose JM (2025) Telemedicine Adoption and Prospects in Sub-Saharan Africa: A Systematic Review with a Focus on South Africa, Kenya, and Nigeria. *Healthcare MDPI* pp. 762.

45. Bizzo C, Almeida RR, Michalski MH, Alkasab TK (2019) Artificial intelligence and clinical decision support for radiologists and referring providers. *J Am Coll Radiol* 16(9): 1351-1356.

46. Marchiori C, Dykeman D, Girardi I, Ivankay A, Kevin T, et al. (2021) Artificial intelligence decision support for medical triage. *AMIA Annual Symposium Proceedings* pp. 793.

47. Mandal K, Dehuri S, Sarma PKD (2025) Analysis of machine learning approaches for predictive modeling in heart disease detection systems,” *Biomed. Signal Process. Control* 106: 107723.

48. Ahmed MI, Spooner B, Isherwood J, Lane M, Orrock E, et al. (2023) A systematic review of the barriers to the implementation of artificial intelligence in healthcare. *Cureus* 15(10): 2023.

49. Taherdoost H (2024) Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration. *Comput Mater Contin* 81(1).

50. Sibomana O, Hakayuwa CM, Obianke A, Gahire H, Munyantore J, et al. (2025) Diagnostic accuracy of ECG smart chest patches versus PPG smartwatches for atrial fibrillation detection: a systematic review and meta-analysis. *BMC Cardiovasc Disord* 25(1): 132.

51. Yang JY, Wu YW, Chuang W, Lin TC, Chang S, et al. (2022) An Integrated Community-Based Blood Pressure Telemonitoring Program—A Population-Based Observational Study. *Acta Cardiol Sin* 38(5): 612.

52. Wada E, Onoue T, Kobayashi T, Handa T, Hayase A, et al. (2020) Flash glucose monitoring helps achieve better glycemic control than conventional self-monitoring of blood glucose in non-insulin-treated type 2 diabetes: a randomized controlled trial. *BMJ Open Diabetes Res Care* 8(1): e001115.

53. Zhang X, Saltman R (2022) Impact of electronic health record interoperability on telehealth service outcomes. *JMIR Med Informatics* 10(1): e31837.

54. Coventry L, Branley D (2018) Cybersecurity in healthcare: A narrative review of trends, threats and ways forward. *Maturitas* 113: 48-52.

55. Xia Q, Sifah EB, Smahi A, Amofa S, Zhang X (2017) BBDS: Blockchain-based data sharing for electronic medical records in cloud environments. *Information* 8(2): 44.

56. Bae S, Yi BK (2022) Development of eClaim system for private indemnity health insurance in South Korea: Compatibility and interoperability. *Health Informatics J* 28(1): 14604582211071020.

57. Joshi S, Sharma M (2023) Assessment of implementation barriers of blockchain technology in public healthcare: evidences from developing countries. *Heal Syst* 12(2): 223-242.

58. Tian W, Fan M, Zeng C, Liu Y, He D, et al. (2020) Telerobotic spinal surgery based on 5G network: the first 12 cases. *Neurospine* 17(1): 114.

59. Zheng J, Wang Y, Zhang J, Guo W, Yang X, et al. (2020) 5G ultra-remote robot-assisted laparoscopic surgery in China. *Surg Endosc* 34: 5172-5180.

60. Bashshur R, Doarn CR, Frenk JM, Kvedar JC, Woolliscroft JO (2020) Telemedicine and the COVID-19 pandemic, lessons for the future. *Telemed. e-Health* 26(5): 571-573.

61. Smith AC, Thomas E, Snoswell CL, Haydon H, Mehrotra A, et al. (2020) Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). *J Telemed Telecare* 26(5): 309-313.

62. Kichloo A, Albosta M, Dettloff K, Wani F, El-Amir Z, et al. (2020) Telemedicine, the current COVID-19 pandemic and the future: a narrative review and perspectives moving forward in the USA,” *Fam. Med. Community Heal* 8(3): e000530.

63. Kruse S, Krowski N, Rodriguez B, Tran L, Vela J, et al. (2017) Telehealth and patient satisfaction: a systematic review and narrative analysis. *BMJ Open* 7(8): e016242.

64. Oughton E (2021) Policy options for digital infrastructure strategies: A simulation model for broadband universal service in Africa. *arXiv Prepr. arXiv2102.03561*.

65. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, et al. (2017) Artificial intelligence in healthcare: past, present and future. *Stroke Vasc Neurol* 2(4): 230-243.

66. Bini SA (2018) Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? *Arthroplasty J* 33(8): 2358-2361.

67. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? *PLoS One* 12(4): e0174944.

68. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, et al. (2019) Do no harm: a roadmap for responsible machine learning for health care. *Nat Med* 25(9): 1337-1340.

69. Islam SR, Kwak D, Kabir MH, Hossain M, Kwak KS (2015) The internet of things for health care: a comprehensive survey. *IEEE Access* 3: 678-708.

70. Patel S, Park H, Bonato P, Chan L, Rodgers M (2012) A review of wearable sensors and systems with application in rehabilitation. *J Neuroeng Rehabil* 9: 1-17.

71. Chen M, Ma Y, Li Y, Wu D, Zhang Y, et al. (2017) Wearable 2.0: Enabling human-cloud integration in next generation healthcare systems. *IEEE Commun Mag* 55(1): 54-61.

72. Al Ameen M, Liu J, Kwak KS (2012) Security and privacy issues in wireless sensor networks for healthcare applications. *J Med Syst* 36(1): 93-101.

73. Krishnamoorthy S, Dua A, Gupta S (2023) Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: A survey, current challenges and future directions. *J Ambient Intell Humaniz Comput* 14(1): 361-407.

74. Khezr S, Moniruzzaman M, Yassine A, Benlamri R (2019) Blockchain technology in healthcare: A comprehensive review and directions for future research. *Appl Sci* 9(9): 1736.

75. Radanović I, Likić R (2018) Opportunities for use of blockchain technology in medicine. *Appl Health Econ Health Policy* 16(5): 583-590.

76. Fan K, Wang S, Ren Y, Li H, Yang Y (2018) Medblock: Efficient and secure medical data sharing via blockchain. *J Med Syst* 42(8): 1-11.

77. Mettler M (2016) Blockchain technology in healthcare: The revolution starts here. *IEEE 18th international conference on e-health networking, applications and services (Healthcom)* p. 1-3.

78. Qureshi N, Manalastas M, Ijaz A, Imran A, Liu YC, et al. (2022) Communication requirements in 5G-enabled healthcare applications: review and considerations. *Healthcare* 10(2): 293.

79. Meshram A, Patil DD (2020) 5G enabled tactile internet for tele-robotic surgery. *Procedia Comput Sci* 171: 2618-2625.

80. Berlet M, Vogel T, Gharba M, Eichinger J, Schulz E, et al. (2022) Emergency telemedicine mobile ultrasounds using a 5G-enabled application: development and usability study. *JMIR Form Res* 6(5): e36824.