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Introduction
Scientists who during the Second World War had devoted their talents to the making (encryption) and
breaking (decryption) of codes, enhancing signal- to-noise ratios in various sensors so as to increase the
lethality of weapons, and other such activities, turned their scientific skills and attention to the
metaphoric beating of their intellectual swords into ploughshares. W. Ross Ashby was an early convert to
the importance of complexity, through the use of Cybernetics [1], in quantifying natural phenomena and
formulated a law on how to control and regulate complex networks leading to what he called "The Law
of Requisite Variety" [2] but herein we use the name "Ashby's Law" [3]:

Any system that governs another, larger complex system must have a degree of complexity comparable
to the system it is governing. Unfortunately, Ashby's Law in its present form failed to capture the
imagination of the broader scientific community. The recognition of its significance was not fully
appreciated until after it was rediscovered over a half century later by West et al. [4] while studying the
exchange of information among various forms of dynamic complex networks, resulting in the Complexity
Matching and Management Effect (CMME). In the latter situation, a complex network can be anything
from an organization to an organism, including one of the most complex of organ-networks (ONs) known
to man, that of the human brain.

A working measure of a network's complexity is determined by the degree of roughness of the ON's time
series X(t) which is determined by the inverse power law (IPL) index of the probability density function
(PDF). This IPL index is a consequence of the scaling behavior of the time series X(λt) = λ X(t) which is
a mono factual dimension when the scaling parameter δ(t) is a constant and is a multifractal dimension
when it is time dependent. The scaling 'equality' is interpreted in terms of the scaled PDF in phase space:
P(x,t)=t  F xt , where the unknown function F(.) is the solution to a Fractal Kinetic Equation (FKE)
first derived and solved by Zaslavsky et al. [5].
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The complexity can therefore be expressed in terms of statistical properties of crucial events (CEs),
which are a subset of renewal events (REs) introduced into statistical analysis by Feller [6] and have
identically distributed independent (IDI) random events. A CE time series (CETS) was subsequently
identified as those REs that have IPL PDFs generated by a process of spontaneous self−organized
temporal criticality (SOTC) [7,8]. The complexity of CETS is defined by the waiting-times τ of the
intervals between consecutive CEs which have an IPL PDF τ  with the IPL index µ in the interval 1< µ <3.
This heavy-tailed complexity has been shown to manifest it self in the empirical distributions of: wealth
[9], the size of cities[10], of word usage [11], of heartbeats [12], and of brain signals [13] to name a few of
the over 50 empirical heavy-tailed PDFs listed in [14] covering disciplines as different as Anthropology is
from Zoology.
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Mahmoodi et al. [15,16]and West et al. [17] have shown that the multifractal dimension MFD D(t)  is
equal to the IPL scaling index D(t)=µ(t)  and is consequently related to the scaling index by means of
µ(t)=2-δ(t), thereby enabling the direct transfer of information between ONs to be achieved using
computational models.
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Consequently, during an information exchange between two ONs, the ON with
the greater instantaneous MFD (D>(t)) will transmit the information and the
ON with the lesser instantaneous MFD (D<(t)) will receive the information
independently of all other considerations, which is equivalent to Ashby's Law
in the present context.

This information transfer was recently shown by Mahmoodi et al. to be due to
complexity control (CC) in living networks [3] thereby replacing CMME as we
show below. Furthermore, it is also shown that it is the CC and not CMME that
is equivalent to Ashby's Law.

CC	dynamic	model

The CE time series (CETS) is the most important concept in discriminating
between CMME and CC in processing empirical time series. We have come to
understand that CETS are foundational for the formation of any quantitative
theory of medicine or its complimentary theory of rehabilitation [18], including
the formulation of any theory of information transfer among ONs whether one
or all are healthy, ill/injured or a combination of the two. Consequently, we list
the results of studies leading to this new viewpoint. The temporal complexity
intrinsic to CEs is used to distinguish CC from CMME [3].

Given the limiting format of a Mini Review the key points of a CETS are listed
here given its definition as a discrete time series with statistically independent
time intervals τ between consecutive events:

a) CEs are a subset of REs

b) CEs have IPL probability density functions (PDFs) for the time intervals
between events

c)  the waiting-time PDF is τ , where the IPL index is in the interval 1< µ <3 and
the CETS are ergodic when 3> µ >2  and non- ergodic when 2>µ >1

-µ

d) the IPL index µ is taken to be the working measure of complexity of the CETS
and, as such, is equal to the multifractal dimension (MFD) µ(t) = D(t)    

e) A second IPL for CETS appears in the Power Spectrum Density (PSD) in
terms of the frequency f	:	S(f)	∝f  , where the IPL index in this case is β = 3 - µ
and consequently falls in the range 0 < β < 2

- -β

f) the PSD IPL index at the value β = 1 gives rise to 1/ƒ — noise at the border
between ergodic and non-ergodic time series (µ=2) [13], whereas for other
values of µ we refer to the CETS as having 1/ƒ —variability [18]

d) CC is manifest within single ON time series, while CMMEs only appear at the
level of large ensemble averages and in the asymptotic regime.

CETS	and	Information	Exchange	Among	ONs

Complexity	Control	(CC)	and	Physiological
Networks
A central aspect of a healthy physiological ON is that it must continually find a
way to adapt to dynamic environmental uncertainty, and this adaptation
strategy must succeed in a time-constrained, high stakes situation [20]. ONs –
which include whole organisms, the organ networks that give rise to these
organisms, and the innumerable inter-cellular and intra-cellular ONs nested
within these organs – that accomplish this adaption strategy typically
correspond to health; ONs that cannot achieve this adaptation strategy
correspond to disease. The most dramatic example for the need to achieve
successful ON adaptation in an extremely time-constrained and high stakes
situation occurs on the day we are born. A fetus must rapidly transition from
life in an intra-uterine home to the profoundly distinct extra-uterine physical
environment they will live in as a newborn infant. While many neonates
successfully achieve this adaptation on their own, many also unfortunately do
not, which can manifest in life-threatening disease that require emergent
clinical attention [21]. Another example is Multiple Organ Dysfunction
Syndrome (MODS), where an acute environmental stressor actively interferes
with inter-organ communication, eroding the capability to coordinate an
adaptive response that can sustain health [22-24]. The second example is
associated with organs functionally decoupling from the patient's physiological
network, manifesting as clinical loss of function at the bedside; when four or
more organs fail in this context, survivability unfortunately plummets to zero
%.

There exists a profound unmet need in clinical medicine to translate the
conceptual framework of health and adaptivity into a capability that can
measure inter-organ communication at the patient's bedside in real-time. The
paradigm of Complexity Control (CC) is a promising candidate that can address
this unmet need [3]. For example, recent work involving the CC paradigm
showed that it is possible to measure real-time dynamic communication
between the heart, brain and lung purely from simultaneously measuring their
associated bedside time series [17,25]. The conceptual engine of CC involves
Reinforcement Learning (RL), which entails continual two-way cross talk
between an agent and its changing environment, which is the central concept of
adaptation [3].

We introduced a dynamic model for complexity control (CC) between net-
works, represented by time series characterized by different values of their
temporal complexity measures, as indicated by their respective IPL indices.
Given the apparent straight forward character of the model and the generality
of the result, we [3] formulated a hypothesis based on the closeness of the
scaling measures of the model to the empirical complexity measures of the
human brain.
The main differences between the empirical CMME model and the current CC
model are itemized as
a) CC is based on reinforcement learning (RL), while CMME is an effect based
on linear response theory [19]

b) CC depends on the form of the interaction [3], while CMME is independent of
the strength of the perturbation [4]

c) the complexity of the interacting networks in CC changes over time, whereas
in CMMEs the two complexities remain unchanged during the perturbation

Conclusion
Consequently, CC is a proper dynamic model for representing systems that can
phenotypically change because of continual bidirectional cross talk across their
respective spatiotemporal scales of function. This is explicitly codified by RL's
mutual feedback mechanism between these interacting systems.

Aside from human disease and rehabilitation, a compelling frontier of CC
application at a much larger functional and temporal scale is the theory of
punctuated equilibria (PEQ) in paleontology [26]. Historically, PEQ emerged as
a paradigm in response to the lack of empirical evidence in the fossil record for
incremental gradual uniform evolution of organisms; rather, empirical
evidence suggests that organisms evolved rather rapidly, in short bursts
randomly spaced at independent IPL time intervals, and not incrementally. In
the case of ON, CC can be used to understand phenotypical changes in the
setting of the health, disease, and rehabilitation; in the setting of paleontology,
CC can be used to understand phenotypical changes that correspond to
speciation events.

CC is an appealing paradigm to understand emergent phenotypical changes as
a consequence of the interaction of systems across a wide set of spatiotemporal
scales in a variety of functional contexts: optimizing personal health via inter-
ON communication for coordinating an effective adaptive response, locomotion 
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rehabilitation in a senior citizen in setting of arm-in-arm walking [27], or at the
most extreme level, speciation due to interaction between organisms and the
environment as in PEQ [26].

This identification of CC rather than CMME as the appropriate mechanism for
explaining the information flow is consistent with Ashby's Law. A major
conclusion reached is that because Ashby's Law is equivalent to CC the
theoretical basis used to explain a number of empirical theories are inaccurate.
Two important misinterpretations are the restoration of complexity of loco-
motion in senior citizens through arm-in-arm walking for one and punctuated
equilibria for another.

The CMME interpretation of arm-in-arm walking [27] is apparently wrong
because of the size in the initial misalignment of the complexities of the
individuals doing the walking. The process of bringing the pathologically low
level of complexity up to the level of normality cannot be achieved by any
perturbative method such as CMME. Thus, any complexity matching method
involving a perturbation is doomed to failure. On the other hand, the mismatch
in complexities are easily relaxed by means of the information exchange in CC.
A similar argument applies to the theory of PEQ [26] because of the large jumps
taken at each step in the CE process [28].
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