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The recent development in Artificial Intelligence (AI) in epigenetics and genome editing is
very impressive. AI has been found to be an effective tool to revolutionize the health care
industry. AI can be used to develop predictive models to identify diseases such as cancer.
Another noteworthy feature of AI is to predict the most effective treatment for the patients.
Predictive models for treatment response can also be achieved by AI. By using medical
history and genetics, AI can accurately predict the treatment options for each patients
allowing doctors to tailor treatment plans. AI is an effective tool to personalize the medicine
recommendation for improving health and preventing diseases. Overall, AI has the potential
in genome editing, disease prognosis, predictive modeling and personalized medicine to the
particular diseases so that it revolutionizes the health care.
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An innovative field in molecular biology, epigenetic editing focuses on modifying the epigenetic
landscape of DNA, histones, and more, leaving the underlying genetic code untouched in the process.
This approach allows scientists to control gene expression in a precise manner [1,2].

CRISPR-based technologies have emerged as particularly prominent in this field, enabling targeted
epigenetic modifications that can significantly influence cellular function and gene activity, especially
when paired with Artificial Intelligence (AI) technology [3,4]. This method can help drive significant
advancements in biomedicine and thus in understanding and addressing a wide range of medical
conditions [2,4]. Monitoring disease progression is essential for effective treatment planning,
particularly in chronic and progressive conditions such as cancer and neurodegenerative diseases.
Tracking disease progression helps in adjusting therapeutic strategies to slow the progression based
on real-time data. AI tools for progression tracking include machine learning models, predictive
analytics, and deep learning algorithms [5]. These tools can process large amounts of patient data,
including genetic, epigenetic, and clinical data, to identify trends and predict future disease outcomes
[6]. These real-world examples demonstrate how AI-enhanced progression tracking is transforming
patient care, allowing for more precise and proactive treatment adjustments, ultimately improving
patient outcomes and quality of life.

Personalized medicine, or precision medicine, involves the examination of genetics, environment,
lifestyle, risk factors, etc. to create a medical plan, intervention, or diagnosis tailored toward each
individual. The importance of precision medicine lies in the shift toward prevention and prediction
rather than reaction-based treatment. As personalized medicine continues to expand as a field, the
use of epigenetics and AI as diagnostic tools is becoming increasingly common. AI capabilities in this
field range from computational and virtual functions, such as deep-learning-based health records and
management systems, to cyber- physical functions, such as robots used to assist during surgeries [7].
Furthermore, the use of AI is especially significant in regards to epigenetics, the study of how
heritable gene activity is controlled without the modification of the DNA sequence [8]. Due to the
plasticity of the human genome, which refers to the ability of a genotype to be expressed as a variety
of different phenotypes, epigenetics is vital to the advancement of personalized medicine, as this field
allows for the subtle nuances of each specific genome to be observed during the course of treatment
[9].
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CRISPR-Based	Epigenetic	Editing	and	AI	Epigenetics	and
the	General	Editing	Process
Epigenetics studies how gene expression can change across generations without altering the DNA
sequence itself [10]. Key mechanisms include DNA methylation, histone modifications, and non-
coding RNA interactions [11-13]. In DNA methylation, a methyl group is added to cytosine within CpG 
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dinucleotides, which can repress transcription by either blocking transcription
factors or attracting proteins that compact the chromatin, limiting access for
transcription to occur [14].

Histone modifications typically activate transcription by reducing the positive
charge on histones. This weakens their interaction with DNA, allowing the
transcription machinery to access the genetic material more easily [15].
However, histone methylation can either activate or repress transcription,
depending on which amino acids are modified and how many methyl groups
are added [16,17]. Non-coding RNAs, such as microRNAs and long non-coding
RNAs, play regulatory roles as well. These RNAs can guide chromatin-
modifying complexes to specific genome locations or pair with mRNA to block
its translation or promote degradation [2].

Epigenome editing allows scientists to modify epigenetic marks at precise
genomic sites, regulating gene expression without changing the DNA sequence
itself. This method employs engineered DNA-binding proteins, such as
CRISPR/Cas9, zinc-finger nucleases, or TALENs, which are fused to catalytic
domains that can either add or remove epigenetic modifications [18,19]
(Figure 1). The targeting is highly specific, thanks to sequence recognition
motifs or RNA molecules like sgRNAs in the CRISPR system, which guide the
proteins to the appropriate genomic locations [20].

Figure	1:	Diagram of the DNA recognition domains available for epigenomic-
modifying enzymes.

Ueda J, Yamazaki T, Funakoshi H. Toward the Development of Epigenome
Editing-Based Therapeutics: Potentials and Challenges. Int J Mol Sci. 2023 Mar
1;24(5):4778. doi: 10.3390/ijms24054778. PMID: 36902207; PMCID:
PMC10003136.

The primary approaches to epigenome editing involve altering DNA
methylation and histone modifications. For instance, DNA methyltransferases
or demethylases can be directed to specific CpG sites to add or remove methyl
groups, leading to gene repression or activation. Similarly, histone
acetyltransferases 

(HATs) or histone deacetylases (HDACs) can be recruited to change histone
acetylation levels, affecting chromatin structure and gene accessibility. This
targeted approach offers the possibility of long-lasting changes in gene
expression, making it a powerful tool for studying gene function, understanding
regulatory networks, and developing therapeutic strategies for diseases
associated with abnormal epigenetic states [3].

CRISPR-Based	Epigenome	Editing	Process

The CRISPR-based epigenome editing process begins with the design and
synthesis of a specific single guide RNA (sgRNA) that is complementary to the
target DNA sequence. This sgRNA directs the dCas9 protein to the precise 

genomic location where epigenetic modifications are desired. The sgRNA
comprises a nucleotide sequence that binds to the target DNA through base
pairing and a scaffold region that interacts with the dCas9 protein [21].

Next, the Cas9 protein is modified to be catalytically inactive, creating dCas9.
This dCas9 is then fused to an epigenetic modifier such as a DNA
methyltransferase (DNMT), a ten-eleven translocation (TET) enzyme, a histone
acetyltransferase (HAT), or a histone deacetylase (HDAC), depending on the
goal of adding or removing specific epigenetic marks. This fusion allows the
precise targeting of epigenetic modifications to specific genomic sites, enabling
control over gene expression [2,22]. Once the sgRNA/dCas9 fusion protein
complex is constructed, it is introduced into the cells, typically using a plasmid
or viral vector [23]. Once inside the cell, the sgRNA guides the dCas9 fusion
protein to the target DNA sequence by complementary base pairing. The dCas9
protein binds to the DNA at the target site, positioning the attached epigenetic
modifier precisely at the desired location. This precise binding is crucial for
ensuring that the epigenetic modifications occur only at the intended sites,
minimizing off-target effects [2].

The epigenetic modifier attached to dCas9 then carries out its function at the
targeted genomic locus. If the dCas9 is fused to a DNA methyltransferase
(DNMT), it will add methyl groups to cytosine residues in CpG dinucleotides,
leading to gene repression. Conversely, if it is fused to a TET enzyme, it will
oxidize methyl groups, promoting their removal and resulting in gene activation.
Similarly, histone acetyltransferases (HATs) will add acetyl groups to histone
tails, promoting a more open chromatin state and increased gene expression,
while histone deacetylases (HDACs) will remove acetyl groups, leading to
chromatin condensation and gene repression [3].

After introducing the sgRNA/dCas9 fusion protein complex and performing the
desired epigenetic modification, researchers verify the changes using various
techniques. Bisulfite sequencing can detect changes in DNA methylation, while
chromatin immunoprecipitation (ChIP) followed by sequencing (ChIP-seq) can
analyze histone modifications. These methods confirm that the epigenetic marks
were successfully added or removed at the targeted loci, ensuring the accuracy
and effectiveness of the epigenome editing process [21,24].

AI	Application	in	CRISPR-Based	Epigenome
Editing
Artificial intelligence (AI) is increasingly critical in enhancing the precision and
effectiveness of CRISPR-based epigenome editing. By optimizing key aspects
such as single guide RNA (sgRNA) design and fusion protein engineering, AI is
transforming genome editing into a more efficient and versatile tool for research
and therapeutic applications [25,26].

AI's impact on sgRNA design is particularly significant. AI has revolutionized
sgRNA design by utilizing machine learning algorithms trained on vast datasets
of previously tested sgRNAs. These algorithms can accurately predict the most
effective sgRNAs by considering DNA sequence composition, secondary
structures that might impede sgRNA binding, and the local epigenetic landscape.
This allows for optimized sgRNA design with enhanced specificity and
efficiency, especially when targeting complex genomic regions [27].

Proteins, including those used in CRISPR-based epigenome editing, can be
designed computationally with the help of AI to optimize their structure and
function. For example, EED binders (EBs) are designed to recruit the Polycomb
Repressive Complex 2 (PRC2) to targeted genomic regions to induce repressive
chromatin states. Deep mutational scanning, combined with machine learning
can contribute to leveraging structural and interaction data to predict the most
effective configurations of EED binders. By analyzing the binding affinity and
specificity of various protein domains, AI can refine these designs to ensure that 
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EED binders efficiently interact with PRC2 components, such as EED, and
achieve precise histone modification. This computational approach allows for
the systematic optimization of fusion proteins, enhancing their targeting
accuracy and overall effectiveness in epigenetic modifications [4,28].

Furthermore, AI helps mitigate one of CRISPR's primary challenges: the risk of
off-target effects. Off-target modifications can occur at sequences similar to the
target, potentially causing unintended gene activation or repression. AI models
address this by analyzing genomic data to identify potential off-target sites. By
refining sgRNA design through AI-driven insights, researchers can significantly
reduce the risk of off-target effects, enhancing the safety and reliability of
CRISPR-based epigenome editing, particularly in clinical applications [29].

In summary, AI is not just a supportive tool but a transformative force in
CRISPR-based epigenome editing. By streamlining sgRNA design, optimizing
fusion protein engineering, and minimizing off-target effects, AI is accelerating
the development of more precise and effective epigenome editing strategies.

Clinical	Applications
Epigenome editing is growing to be an innovative approach in medical research
and treatment, providing precise interventions for diseases driven by
dysregulated gene expression. Genetic disorders can be potentially treated,
where epigenetic causes of such diseases can be addressed with the precise
modulation of gene activity [3]. For instance, diseases like Fragile X syndrome
which are characterized by the silencing  of a critical gene can be managed by
reactivating the gene using epigenome editing, creating a therapeutic path to
mitigate symptoms [30].

In oncology, epigenome editing is being explored as a powerful tool for both
direct and adjunctive cancer therapies. Many cancers are driven by aberrant
epigenetic modifications that lead to the activation of oncogenes or the
suppression of tumor suppressor genes. By reversing these modifications,
epigenome editing can restore normal gene expression patterns, potentially
halting the progression of cancer or even reversing malignant phenotypes
[31,32]. Regenerative medicine is another area where epigenome editing shows
considerable promise. The ability to precisely control the expression of genes
involved in cell differentiation and proliferation opens up new possibilities for
tissue repair and regeneration. For instance, modulating the expression of
specific genes could enhance the regenerative capabilities of stem cells or even
reprogram mature cells to adopt new identities, which could be particularly
useful in treating neurodegenerative diseases or repairing damaged tissues [33].

As research continues to advance, the applications of epigenome editing in the
medical field are expected to expand, offering new hope for conditions that are
currently difficult to treat with conventional therapies. This technology's
precision and versatility make it a valuable tool for developing personalized
treatments, potentially revolutionizing how we approach complex diseases [22].

Model validation, employing cross-validation and metrics like AUC-ROC, ensures

predictive accuracy [36]. Once validated, models predict cancer prognosis in

new patients based on their epigenetic profiles, with explainable AI techniques

elucidating influential markers. Clinically, these AI-driven insights enable

physicians to tailor treatments based on individual risk profiles, improving

patient outcomes and personalizing cancer care.

Neurodegenerative diseases, such as Alzheimer's and Parkinson's, are

characterized by the progressive degeneration of the nervous system, leading to

a decline in cognitive, motor, and functional abilities over time. Monitoring

disease progression is crucial for optimizing treatment strategies and improving

patient outcomes. By leveraging epigenetic changes, which involve

modifications in gene expression that do not alter the DNA sequence,

researchers can gain insights into the disease's progression and tailor

therapeutic 

interventions accordingly. Advanced AI tools, including machine learning and

deep learning algorithms, play a significant role in tracking these changes by

analyzing vast amounts of genetic, epigenetic, and clinical data. For instance, AI

models can evaluate medical imaging and patient records to detect patterns of

cognitive decline in Alzheimer's patients, enabling more personalized and

timely interventions [37]. The integration of AI in clinical practice, such as at

institutions like the Mayo Clinic, enhances the ability to monitor and adjust

treatment plans based on real-time data, ultimately contributing to more

effective management of neurodegenerative diseases (Figure 2).

It is important to use the right type of artificial intelligence model to accurately

predict diseases. The following graph illustrates the trade-off between

performance and explainability across different machine learning models used

for predicting neurodegenerative disease progression, such as Alzheimer's.

Deep learning models (e.g., GAN, CNN, RNN) offer high performance but limited

explainability, while rule-based models and decision trees provide greater

interpretability at the cost of predictive accuracy. Ideal models strive to balance

both performance and explainability. Ensembles like XGBoost and Random

Forests offer a middle ground, combining high performance with moderate

explainability. The perfect balance is necessary to provide accurate predictive

modeling.

Monitoring	Disease	Progression	(Pranathi)
The integration of epigenetics and artificial intelligence (AI) in cancer prognosis
involves a multi-step process that uses advanced computational methods to
enhance disease prediction and management [34]. First, high-throughput
epigenetic data, including DNA methylation profiles, histone modifications, and
non-coding RNA expression levels, are collected from cancer patients using
techniques like whole-genome bisulfite sequencing and RNA sequencing [35].
This raw data goes through preprocessing to eliminate noise and biases, which
ensures reliability. AI algorithms then identify relevant epigenetic features
associated with cancer prognosis through methods such as LASSO regression
and random forests. These features train predictive models using supervised
learning techniques, including neural networks and gradient boosting machines. 

Figure	2:	Performance vs. Explainability in AI Models for Neurodegenerative
Disease Prediction.

Citation:  Vasudevan NR, Manivannan P, Ramesh P, Ayyappan V (2025) The Role of Artificial Intelligence in Epigenome Editing,
Predictive Modeling, Disease Prognosis and Personalized Medicine. Shr J of Res & Sci 1.

  Copyright © Ayyappan V



Page 4/7
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prediction in neurodegenerative diseases. Journal of Neurology and
Neurorehabilitation Research 15(3): 249-261.
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Cardiovascular diseases (CVDs), including conditions such as coronary artery
disease, hypertension, and heart failure, are a leading cause of morbidity and
mortality worldwide. Effective management of CVDs requires continuous
monitoring of disease progression to adapt treatment strategies and improve
patient outcomes. The integration of epigenetics into cardiovascular research
offers insights into how genetic expression changes contribute to disease
development and progression, independent of DNA sequence alterations. AI
tools, including predictive analytics and machine learning models, are
increasingly employed to analyze extensive datasets from medical records,
imaging studies, and genetic information. These AI systems can identify
patterns and predict cardiovascular events, such as heart attacks or stroke, by
evaluating risk factors and disease markers. For example, AI-driven algorithms
can assess patient data to predict the likelihood of adverse cardiac events,
allowing for timely intervention and personalized treatment plans [38].
Institutions like the Cleveland Clinic use AI to enhance cardiovascular care by
analyzing patient histories and diagnostic data, leading to more precise and
effective management strategies. The application of AI in cardiovascular health
not only helps in monitoring disease progression but also in optimizing
therapeutic approaches to improve patient quality of life and outcomes.

In breast cancer prognosis, predictive modeling using AI and epigenetics has
shown promising applications in improving early detection, personalized
treatment, and overall survival outcomes. AI models, particularly those utilizing
machine learning techniques, can analyze epigenetic markers such as DNA
methylation and histone modifications, which are crucial in breast cancer
development and progression [39]. By integrating these epigenetic patterns
with clinical data, AI algorithms can identify specific biomarkers linked to
different breast cancer subtypes. For example, studies have shown that certain
methylation signatures are highly associated with more aggressive forms of
breast cancer, like triple-negative breast cancer, which lack targeted therapies.
By incorporating these epigenetic signatures into AI models, researchers can
more accurately predict disease prognosis and identify patients who may
benefit from specific interventions.

Moreover, predictive models are now being designed to not only assess overall
risk but also predict treatment response. Epigenetic modifications influence the
expression of genes involved in drug resistance, and AI can help identify these
changes early on, allowing clinicians to personalize treatment plans. For
instance, epigenetic-based AI models have been developed to predict the
likelihood of response to chemotherapy in breast cancer patients, leading to
more tailored treatment strategies and better management of adverse effects
[40]. This approach enhances decision-making and improves patient outcomes
by shifting from a one-size-fits-all strategy to a more individualized approach
based on precise epigenetic risk factors.

AI-driven models utilizing epigenetic data have made significant advancements
in risk assessment and disease prediction. A key application is in predicting
heart failure risk using DNA methylation profiles combined with clinical
features. This study developed a model that integrates machine learning
algorithms like LASSO and XGBoost for feature selection, followed by training
with deep neural networks [41]. The model achieved high accuracy in
predicting heart failure by analyzing both low-order and high-order feature
interactions within epigenetic data, showcasing the potential of combining
genomic and clinical data for early detection.

In cancer research, AI models integrating epigenetic factors have also proven
transformative. For example, a UCLA study focused on analyzing the gene
expression patterns of 720 epigenetic factors across 24 cancer types. The 

researchers discovered that clustering tumors based on these patterns allowed

for more accurate predictions of patient outcomes, particularly in cancers such

as adrenocortical carcinoma, kidney renal clear cell carcinoma, and lung

adenocarcinoma [42]. The AI models outperformed traditional methods like

cancer stage and grade by categorizing patients into high-risk and low-risk

groups based on epigenetic markers. This breakthrough could guide

personalized therapies by targeting specific chromatin regulators and other

epigenetic factors linked to disease progression.

Methodologically, these models employ a blend of machine learning techniques

and deep learning frameworks. Factorization-machine-based neural networks,

for instance, are used to learn complex interactions between epigenetic features

and clinical data. In the heart failure study, the Deep FM algorithm,

incorporating DNA methylation data and electronic health records (EHRs),

demonstrated enhanced predictive capability through optimized parameter

settings and rigorous model validation techniques [43]. Similarly, in cancer

prediction, clustering epigenetic factors allowed for the development of robust

AI models that could generalize across multiple tumor types, leading to

improved patient stratification and prognosis. Overall, these advancements

underscore how AI and epigenetics are driving a shift toward precision

medicine. By integrating complex epigenetic data with cutting-edge algorithms,

these models enable more nuanced risk assessments, providing clinicians with

powerful tools to tailor prevention and treatment strategies based on an

individual’s unique epigenetic profile.

The integration of epigenetics and artificial intelligence (AI) in disease

progression tracking marks a significant advancement in personalized medicine.

By analyzing vast amounts of genetic, epigenetic, and clinical data, AI tools

provide real-time insights into the course of various diseases, enabling more

precise and individualized treatment strategies. The application of these

technologies in clinical settings, such as oncology, neurodegenerative diseases,

and cardiovascular care, has already demonstrated improved patient outcomes

through tailored interventions. As AI continues to evolve, its role in enhancing

disease monitoring and management will only become more prominent, driving

further innovation in healthcare.

Ultimately, the synergy between AI and epigenetics offers a promising pathway

towards more effective and personalized treatment approaches, improving both

the quality and longevity of patients' lives

Personalized	Medicine:	Applications	and
Techniques	(Pranaya)
Due to its versatility, personalized medicine applies to many aspects of

healthcare. Still, it is especially so in disease detection and management, which

uses genetic analyses to predict patient predisposition toward developing

certain conditions or disease susceptibility. For example, in recent years, an

increasing amount of research has been done on the genetic and biological

factors that contribute to the formation of chronic diseases, which may include 
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obesity, cardiovascular disease, type 2 diabetes, autoimmune diseases, etc.
Certain genetic loci, paired with may increase an individual’s predisposition to
being affected by many chronic diseases. However, due to the genetic diversity
of many populations, data collected from one group may not apply to another
[44]. Personalized medicine has also been used in oncology to treat cancer,
which includes genetic testing to find specific information about an individual’s
cancer to create a treatment plan that delivers the correct medicine to the
patient in the correct dose and at the correct time. For example, for patients
with late-stage non-small cell lung cancer, conventional treatments are often
ineffective. Thus, personalized medicine has been used for genetic testing to
understand the nature of the cancer and to develop an appropriate medicine.

Crizotinib, which inhibits the c-ros oncogene 1 and ALK, is used for the 5% of
patients who are receptive toward this anti-cancer drug. Also, for cancer
treatment, next-generation sequencing (NGS), a parallel sequencing technology
used to determine the order of nucleotides in a genome or targeted area of
DNA, has been seen to lead to viable data for the treatment of cancerous tumors
[45]. Another application of personalized medicine lies in the management of
diet-related diseases. Using the precision approach healthcare providers and
nutritionists are able to create a customized diet that aids the individual in
managing their diet-related conditions. For example, a study using a precision
nutrition approach created a personalized diet based on biochemical,
anthropometric, dietary, and physical factors to predict blood glucose
response, demonstrating the viability and importance of personalized medicine
in this area of study [44].

One of the main aspects that allowed personalized medicine to advance as far as

it has so far is AI. The specific form of AI that extracts patterns from data has

been especially advantageous in furthering the field of personalized medicine. A

key subset of AI, deep learning, is efficient in analyzing datasets and detecting

patterns that can identify genetic variations [48]. Deep learning, more simply

put, is a way of processing data done by computers that imitates the human

brain by recognizing complex patterns in images, texts, sounds, etc. Thus, deep

learning has been used in the diagnosis, monitoring, and treatment of many

diseases. Furthermore, deep learning has greatly improved medical imaging as

it provides the means for more accurate and efficient data analysis, accelerating

the precision medicine approach to treatment. Deep learning is also applicable

to pharmacogenomics. Researchers can predict a patient’s response to a drug by

analyzing their epigenome, which increases the efficiency of personalized

medicine regarding treatment outcomes (Figure 3).

Current	Innovations	and	Areas	for
Development	in	Personalized	Medicine

Regarding the future of personalized medicine, one key innovation by the FDA
is the evaluation of the safety and effectiveness of bacteriophage cocktails by
using animal models to treat bacterial infections that are thought to be
antibacterial resistant. Other innovations include the development of
pharmacogenetic tests, which provide healthcare professionals with
information about a patient’s genetic makeup and how that may affect their
response to treatments [46]. However, personalized medicine is not always
effective. The incredibly specific nature of the field causes limited accessibility,
as not all facilities are equipped to create and implement personalized
treatment plans. Additionally, personalized medicine poses some ethical
concerns as the heavy reliance on genetic data and personal information raises
concerns about data privacy and misuse. Also, due to this usage of genetics and
data, personalized medicine can be time-consuming and expensive. As
personalized medicine is becoming more popular, however, scientists and
healthcare providers are working to improve shortcomings in the field.

AI	and	Epigenetics	in	Personalized	Medicine
Epigenetics is immensely useful in personalized medicine. Because every
individual’s epigenome is different, the analysis and usage of epigenetics in
precision medicine can offer the patient a more efficient and accurate
treatment plan and healthcare experience. As for the application of epigenetics
in personalized medicine, epigenetic disease associations are key to providing
clues for disease etiology and function as diagnostic biomarkers. Epigenetics
are also used in drug production, as some disease-associated epigenetic states
can be counteracted with pharmacological treatments, often called ‘epidrugs’.
As an extension, epigenetic biomarkers are able to be used to predict drug
response [47]. More than biomarkers, however, epigenetics in personalized
medicine has had the most number of applications in oncology (Figure 3).

Figure	2:	Flow Chart Depicting the Relationship Between Personalized Medicine
and AI.

Deep	Learning	in	Personalized	Medicine

Types	of	Deep	Learning
Many forms of deep learning accomplish different goals in the personalized

healthcare field. One of those, convolution neural networks, recognize patterns

in medical images that can indicate a disease, based on what the system is told

to ‘look’ for [48]. Additionally, related methods can be used to analyze changes

in images over time. Another form of deep learning, artificial neural networks

(ANN), a simpler version of a neural network, mimic the information processing

nodes in biological systems but are static, not dynamic like an organism’s

biological brain [8]. Another type of ANN, recurrent neural networks (RNN), use

sequential data to assist with tasks such as clinical trial participant selection, as

they can be ‘trained’ to check if patients meet a certain amount of criteria. Of the

many types of deep learning methods tested for this purpose, RNNs performed

the best. Deep neural networks have a greater amount of layers than other

neural networks that perform mathematical translation to convert raw data to

useful information. This method has been used in tracking patient no-shows and

providing possible explanations for the absence, such as weather information

for the day of the appointment.

Generative adversarial networks generate photos, videos, and audios. In

healthcare, they are often used to generate artificial MRI images to train deep

learning models. Though there are many types of deep learning, the 
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aforementioned methods are predominantly used in healthcare to provide a
personalized and efficient experience for the patient and provider.
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Conclusion
Epigenome editing provides a precise method to control gene expression
without changing the underlying DNA, offering new hope for treating diseases
like cancer, genetic disorders, and neurodegenerative conditions. By using
CRISPR technology with epigenetic modifiers, it allows targeted activation of
genes and correction of abnormal epigenetic changes. As research moves
forward, this approach could transform personalized medicine and improve
therapies, especially in areas like oncology and regenerative medicine. The
integration of epigenetics and AI has revolutionized disease progression
tracking in conditions like cancer and neurodegenerative diseases. By
combining thorough epigenetic data with AI models, clinicians can more
accurately predict patient outcomes and personalize treatments. As AI
technology continues to advance, its application in tracking disease progression
will lead to even greater precision in personalized medicine, enhancing both
patient outcomes and quality of life. The application of AI in the field of
epigenetics essentially increases the efficiency of personalized healthcare
providers, as various algorithms and methods can be applied to visualize and
analyze an epigenome.

Applications	of	Deep	Learning	in
Personalized	Medicine
Deep learning is immensely impactful in the advancement of personalized
medicine. At Stanford University, researchers developed a deep learning
algorithm to analyze genomic data to aid a risk prediction model for the
development of cardiovascular diseases. At the University of California San
Francisco, deep learning models are being used with brain MRI data to predict
the progression of Alzheimer’s. Many EWASs have recognized differently
methylated DNA and new genes associated with Alzheimer’s. In a recent study,
a deep neural network was used to predict Alzheimer’s by integrating DNA
methylation and gene expression. This integration greatly improves prediction
accuracy [49]. Deep learning is also being included in clinical workflows to
strengthen personalized medicine. In a study analyzing the connection between
deep learning and cancer epigenetics, it was seen that many deep learning
models can be applied to diagnose cancer epigenetics and diseases, predict
methylation states, discover epigenetic biomarkers, etc. [50].
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